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Proxemy Research is under contract to NASA to perform science research of volcanic plumes on Io

and Mars. The following report constitutes delivery of Milestone Event #7 under NASA contract

NASW-00013.

TITLE: Io/Mars Quarterly Progress Report #I01-04

AUTHOR: Dr. Lori S. Glaze

1. Introduction

Proxemy Research is under contract to NASA to perform science research of volcanic plumes

on Io and Mars. Funding for this project began in May 2000 under contract NASW-00013. The

project covered by this contract is comprised of two distinct tasks that were outlined in the original

proposal entitled "Volcanic plumes on Io and Mars," dated May 1999. The objective of the first task

was to develop a model that constrains stochastic-ballistic effects of variable ejection velocities on

areal concentrations of volcanic deposits on Io. The objective of the second task was to apply a

buoyant plume rise model to explosive volcanic eruption colunms released into an early Mars

atmosphere.

2. Quarterly Report

Tremendous progress was made in the last quarter of 2001. Over this three month period,

efforts were directed toward three primary activities: (1) submission of a manuscript describing the

limits of volcanic plume rise models to conditions on Mars [Attachment A], (2) preparation of a

manuscript in collaboration with Ellen Stofan and others describing a statistical analysis of coronae

on Venus, and (3) submission of a manuscript in collaboration with Stephen Baloga describing a

probabilistic approach to pahoehoe lava flow emplacement [Attachment B]. This last activity has not

been funded directly by this contract, but is a collaborative PGG project. Thus it is reported here for

completeness.

Volcanic Plumes on Mars

The second task of this contract is intended to focus on the application of plume rise models

to explosive volcanic eruptions on Mars. The task considers both current and paleo-atmospheric

conditions. Over the last two years, it has become clear that in the past terrestrial plume rise models

have been applied to Mars without ensuring the validity of the models themselves. Our studies have

shown that the convective rise models that have been used previously break down a few km above

the eruption vent. As a result, other studies (e.g., Wilson and Head, 1994; Hort and Weitz, 2001)

have overestimated the heights to which volcanic eruption plumes can rise.
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In early December a manuscript entitled "Volcanic plume heights on Mars: Limits of validity

for convective models" was submitted to JGRfPlanets. The manuscript, included here as Attachment

A, describes where and why these convective rise models break down. We show that basic model

assumptions are violated when (1) vertical velocities exceed the speed of sound, (2) radial expansion

rates exceed the speed of sound, (3) radial expansion rates approach or exceed the vertical velocity,

and (4) plume radius grossly exceeds the plume height. All of these assumptions are easily violated

under current atmospheric conditions on Mars. The reason for the model breakdown is that the

current Mars atmosphere is not of sufficient density to satisfy the conservation equations. It is likely

that second order effects dominate the plume rise dynamics very rapidly.

Coronae on Venus

In late 2000, Proxemy Research was fortunate to employ Dr. Ellen Stofan. Throughout 2001,

we have begun to develop several collaborations. One such collaboration has been to statistically

analyze coronae on Venus that Dr. Stofan has previously classified in her corona database. Through

this analysis, we are able to distinguish between various subpopulations of coronae. We expect to

submit this manuscript within the next three months, and will attach the final version at that time.

Pahoehoe lava flows

I have been collaborating with Stephen Baloga on his PGG grant for many years. One of his

primary tasks has been to explore a stochastic model for the emplacement ofpahoehoe in the "toe"

regime. This last quarter saw the submission of a manuscript to JGR/Solid Earth that we have been

working on for quite some time. The manuscript, entitled "Pahoehoe transport as a correlated

random walk", is included here as Attachment B. The manuscript describes a correlated random walk

model that can predict cross sectional profiles that are consistent with pahoehoe toe emplacement.

Although this activity has not been funded directly under this contract, it is included here for

completeness.

3. References

Hort, M. and CM Weitz, Theoretical modeling of eruption plumes on Mars under current and past

climates, J. Geophys. Res., 106, 20,547-20,562, 2001.
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Volcanic plume heights on Mars:

Limits of validity for convective models
Loft S. Glaze and Stephen M. Baloga, Proxemy Research, 20528 Farcrott Lane,

Laytonsville, MD 20882, 301-313-0026, lori@proxemy.com

Submitted to JGR/Planets, December 5, 2001

Abstract. Previous studies have overestimated volcanic plume heights on Mars. In this work, we

demonstrate that volcanic plume rise models, as currently formulated have only limited validity in any

environment. These limits are easily violated in the current Mars environment, and may also be

violated for terrestrial and early Mars conditions. We indicate some of the shortcomings of the model

with emphasis on the limited applicability to current Mars conditions. Specifically, basic model

assumptions are violated when (1) vertical velocities exceed the speed of sound, (2) radial expansion

rates exceed the speed of sound, (3) radial expansion rates approach or exceed the vertical velocity,

(4) plume radius grossly exceeds plume height. All of these criteria are violated for the example given

here. Solutions imply that the convective rise model is only valid to a height of-10 km. The reason

for the model breakdown is that the current Mars atmosphere is not of sufficient density to satisfy the

conservation equations. It is likely that diffusion and other second order effects dominate the

dynamics within the first few kilometers of rise. When the same criteria are applied to eruptions into

a higher density early Mars atmosphere, we find that eruption rates higher than 1.4 x 10 9 kg/s also

violate model assumptions. This implies a maximum extent of-65 km for convective plumes on early

Mars. The estimated plume heights for both current and early Mars are significantly lower than those

previously predicted in the literature. Therefore, global-scale distribution of ash seems implausible.

Introduction

Models of buoyant volcanic plumes

have been applied to the Earth (e.g., Glaze et

al. [1997]), Venus [Thornhill, 1993; Robinson

et al., 1995; Glaze, 1999], Mars [Mouginis-

Mark et al., 1988; Wilson and Head, 1994;

Kusanagi and Matsui, 1998; Hort and Weitz,

2001], and Triton [Soderblom et al., 1990;

Kirk et al., 1990]. These applications develop

various inferences about the role of explosive

volcanism in the transport and redistribution of

volatiles, the character of eruption conditions,

and the nature of surface deposits. These

inferences are completely dependent on the

validity of the underlying physics contained in

the plume models.

The role of explosive volcanism in the

transport and redistribution of volatiles on

Mars is particularly intriguing. The conjectures

of a warm and wet paleoclimate [Pollack et al.,

1987], possibly capable of sustaining rainfall

[Craddock et al., 1998] and standing water

[Parker and Currey, 2001], would favor

buoyancy driven plumes. This, coupled with

morphologic evidence that older volcanic

centers were more explosive [Greeley and

Spudis, 1981] may have meant a significant

role for explosive volcanism in the injection of

green-house gases into the atmosphere.

Explosive volcanism under such conditions

may have been important for the the

redistribution of water on a regional basis as

well as a factor in the global water budget.
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Long runout pyroclastic flows, and other

features on Mars may be the result of this type

ofpaleovolcanism. It has been proposed that

layered terrain observed in high resolution

MOC (Mars Orbiter Camera) images may be

ash deposits from enormous volcanic plumes,

that mantle broad regions [Malin and Edgett,

2000]. Furthermore, if explosive volcanism on

Mars could produce plumes extending

hundreds of kilometers into the atmosphere,

these plumes could transport volatiles to the

outer atmosphere, facilitating atmospheric

release through Jeans escape [Chamberlain,

1978].

All of these important planetary science
issues cause concern about the limits of

validity for buoyant volcanic plume models

and the progeny of inferences drawn from their

applications. Many inferences, such as

distribution of eruption products, are

dependent on the maximum predicted plume

height. Plume height estimates given in most

terrestrial and planetary applications are based

on conservation relationships established by

Morton et al. [1956] for buoyant convective
rise. The basis of the Morton formulation for

convective rise is a system of first-order

differential equations prescribing the

conservation of mass, volume, and momentum.

All aspects of turbulence are reflected in a

single constant "entrainment" parameter.

These models are intended to approximate

solutions of the full Navier-Stokes fluid

dynamics system. However, they contain

many implicit assumptions and they have only

been validated for laboratory, and small

industrial plumes on Earth.

While there is broad agreement

between theory and observations for volcanic

plumes on Earth, it is important to remember

that the simple first-order models are

necessarily limited. This is due, in part, to the

fact that buoyant atmospheric plumes display

physical processes that are extremely difficult

to model for a wide range of circumstances

and parameters. Volcanic plumes are

turbulent, have horizontal boundaries that are

free to respond to internal dynamics, interact

intimately with the local ambient atmosphere,

and contain a variety of gas, liquid and particle

constituents. Also, from an empirical point of

view, field measurements of the quantities

needed to improve the theoretical models of

turbulent atmospheric plumes are extremely

difficult to obtain by comparison with

laboratory or natural buoyancy (e.g., industrial

plumes) experiments with liquids. The

application of these models to other more

extreme environments, such as those found in

planetary settings on Venus and Mars,

exacerbates our need to understand exactly

under what conditions the models are valid.

Longstanding opinion in the literature

is that explosive volcanic eruption plumes

extend five times higher on Mars than analogs

on Earth for similar eruption rates, and that

column collapse occurs at heights twice those

on Earth [Wilson and Head, 1994]. Some

estimates [Wilson and Head, 1994; Kusanagi

and Matsui, 1998; Hort and Weitz, 2001]

claim that explosive eruption plumes can climb

to heights in excess of 100 km on Mars. This

is more than twice as high as the Mount

Pinatubo eruption plume, in an atmosphere

that is considerably less dense. There are

questions about the validity of convective rise

models for volcanic plumes on Earth that have

never been addressed. These questions

become major concerns when models are

applied to the Martian environment.

It is our belief that, not only have basic

assumptions of the models been violated in

many applications found in the literature, but

the buoyant plume models have been



Glaze and Baloga: Validity of plume models Page 3

extrapolated well-beyond their limits of

validity. There are at least 7 areas of concern

that limit the validity of plume rise models

formulated in this way. These areas of
concern are as follows:

1) Speed of sound violations: The models are

totally inapplicable, despite what has appeared

in the literature, when the speed of sound is

exceeded (in the vertical or radial directions),

or the atmosphere is too thin to permit

definition of the speed of sound [Stothers,

1989].

2) Radial expansion: The intent of these

models is to describe a plume that is moving

primarily upward, not outward. As a result,

the rate of radial expansion should be small

compared to the vertical velocity and the

overall plume radius should be small compared

to the plume height.

3) Ambient air availability: Turbulent.

convection models implicitly assume that there

is enough ambient air for the plume to behave
as a continuum. The models also assume that

the corresponding dynamic impact of the

plume on the atmosphere is negligible.

4) Instant mixing: Most volcanic applications

of the Morton approach have considered only

the bulk properties of the plume. This carries

with it the implicit assumption that all changes

in pressure, temperature and density within a

control volume are felt instantly and

simultaneously throughout each horizontal

control volume.

5) Confluent particle and gas flow: Particles

provide the majority of the heat that drives

buoyancy. When we assume that particles and

gas flow confluently at all times, it is implied

that there must be enough gas pressure to

suspend the particles and only enough

turbulence to do this without ejecting them. In

addition, the heat contained in the particles

must be made available to the gas. The time

required for conductive heating of the gas

must be negligible.

6) Pressure balance: One of the most basic

simplifying assumptions is that the pressure

within the plume is the same as without.

Exceeding the speed of sound is an obvious

violation of the pressure balance assumption,

but there are other indicators that the pressure

balance assumption is violated even in lower

velocity cases, including rotating columns

observed in firestorms and industrial plumes.

7) Diffusion and other second order effects:

Many second-order effects accounted for in

the complete Navier-Stokes treatment (such as

diffusion of mass, turbulent eddies, momentum

and heat) are ignored in the Morton system. In

this reduction, all the second-order effects

have been compressed into the entrainment

constant, t_. It is not clear when the ignored

second order effects become important, or if

the entrainment parameter is indeed constant

in different turbulent environments (e.g.,

Mars).

Thus, the question we hope to answer

with this paper is, "What are the limits of

validity for the Morton-type convective rise

formulation for conditions on Mars?". We

begin with a brief review of the approach that
has been the most common method for

describing volcanic plumes, including the basic

assumptions in the original Morton

simplification. We then analyze to what

extent these assumptions are valid by

addressing the concerns listed above. We

focus on current atmospheric conditions found

on Mars, as well as the Earth and early Mars.

Finally, we attempt to answer the questions:

how high could a volcanic plume realistically
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rise in the current Mars atmosphere, and how

high would the same plume go in a 'paleo'

atmosphere?

Convective Rise Models

For completeness, we provide here

some background and basic information

concerning the convective rise models that are

referred to throughout this paper. Over the

past two decades, several models describing
the convective rise of terrestrial volcanic

plumes using a system of first-order

conservation equations have appeared in the

literature [Wilson et al., 1978; Sparks and

Wilson, 1982; Sparks, 1986; Woods, 1988,

1993; Glaze and Baloga, 1996; Glaze et al.,

1997]. These models are based on the original

work of Morton et al. [1956]. Morton et al.

attempted to approximate the more complex

Navier Stokes approach to modeling small-

scale buoyant flows. It is interesting to note,

however, that as yet no one has ever shown a

direct link between the time-honored Navier-

Stokes and the Morton system. Morton et al.

approximated the turbulent entrainment of

ambient fluid into a convectively rising plume

by using an empirical parameter, referred to

here as a. This was originally a very

innovative approach that side-stepped the

complex modeling of both a turbulent plume

and the motion of the ambient atmosphere

with a free-boundary between them.

The basic set of conservation equations

to be examined in this study are taken from

Glaze et al. [ 1997], hereat_er referred to as the

model. Other models may contain slight

differences, but the basic assumptions of

Morton et al. [1956] dominate all results. The

basis of this approach is the expression for the

conservation of mass, given by

d[p,ur2] : 2aP_ ur (1)

Please see the Notation table for definitions of

all variables. The entrainment constant, a,

appears explicitly in (1), indicating that the

mass of ambient fluid entrained is directly

proportional to the upward rise velocity of the

plume itself.

The momentum conservation equation

corresponding to (1) that prescribes the

buoyancy relationship with the ambient fluid

can be written as

_[9Bu2r2]=g(P_-9B) r2 (2)

The thermal energy conservation is

_Bur2CBO] = 2_9o_urCoBT - p_urZg_dPa(3)

where the first and second terms on the fight

hand side describe how the bulk plume

temperature changes due to the entrainment of

ambient fluid at a different temperature and

adiabatic expansion, respectively.

This simplified approach to modeling

buoyantly convecting plumes was stimulated

by a desire to understand the dynamics of

small industrial plumes. To this end, detailed

validation studies were conducted (e.g., Briggs

[1969]) to ensure that the models could

adequately describe the behavior of convecting

plumes in the lower troposphere. Similar

models have also been applied to the dynamics

of firestorms that are sources of enormous

heat [Carrier and Fendell, 1983]. Wilson et al.

[1978] and Settle [1978] compared model

results to observations of volcanic plume rise

and concluded that the Morton-type model of
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convective rise was broadly applicable to

plinian style volcanism on Earth. Sparks et al.

[1997] also present data that support the use

of convective plume models, such as that

shown above, to describe volcanic eruption

columns on Earth. These volcanic comparisons

focused on smaller, tropospheric plumes.

Thus there are still unresolved issues regarding

the broad applicability of the Morton style

models to volcanic plumes that penetrate the

stratosphere. Furthermore, these comparative

analyses are not strictly validation studies, as

the true eruptive parameters are always

unknown.

There are many fundamental

assumptions inherent to all the first order

models for convective rise [Stothers, 1989].

The most basic of these include the

assumptions that the (1) pressure within the

plume is the same as ambient for all altitudes

(i.e, plume is 'pressure balanced'), (2) plume

material is transported primarily upward (i.e.,

the vertical velocity is large relative to the

radial expansion), (3) particles are able to

transfer heat instantaneously to the plume gas

(heat conduction within the particle is not

important), (4) density difference between the

plume and ambient fluid is "small" (although

neither the absolute difference, nor the

difference relative to other parameters,

necessary for model validity have ever been

quantified), (5) particles and gas move

together (e.g., no drag), and (6) ambient

atmosphere is of sufficient density that the

plume can be treated as a continuum. An

implicit corollary to point (1) is that the

vertical velocity of the bulk plume must be less

than the local speed of sound.

In applying such models to volcanic

eruption plumes on Mars, point (6) becomes

of critical importance. The very core of the

model described above is that the eruption

column must convect, not merely rise

buoyantly. Buoyancy is simply the result of

density differences in fluids. For example, a

balloon can rise buoyantly, but it cannot

convect. The process of convection requires

the entrainment of ambient fluid and, thus,

sufficient ambient fluid must be available for

convection to occur at all. The existence of

sufficient ambient fluid is a subtle requirement.

But, without ambient fluid, there is nothing to

"entrain".

Comparison of

Conditions

Atmospheric

We now compare several attributes of

the current Mars atmosphere with the Earth

and plausible paleo-atmospheric conditions on

Mars. We then present several examples

illustrating how and when the basic

assumptions above break down.

The convective rise models described

above are critically dependent on the basic

assumption that there is sufficient atmosphere

available for entrainment. We know that at

some limit in the absence of sufficient

atmosphere, the dynamics of the ejected

material must be controlled by ballistic

behavior, such as that observed on Io [Glaze

and Baloga, 2000]. Where and if'the transition

occurs is very difficult to ascertain, but the

point at which the definition of the speed of

sound breaks down is certainly an upper limit

for a continuum model. Before we can begin

looking at the model, however, we must first

characterize the atmosphere in which we are

trying to convect. In this section we define the

basic atmospheric parameters that are

important to the assumptions of the convective

models and provide comparisons with our own

atmosphere on Earth.
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Current atmospheric conditions on

Mars are significantly different than on Earth.

The gravitational force holding the atmosphere

is less, the composition is different (primarily

CO_ on Mars vs Nz and 02 on Earth), the

surface pressure is two orders of magnitude

less, and the atmosphere is considerably

cooler. While the pressure of the paleo-Mars

atmosphere may have been closer to current

conditions on Earth, the composition,

temperature and gravity still strongly influence

convective plume rise.

For comparative purposes, we use the

US Standard Atmosphere for Earth (e.g.,

Handbook of Chemistry and Physics [1955]).

For Mars, we use parameters derived by Seif

and Kirk [1977]. More recent estimates of

atmospheric conditions on Mars derived from

the Mars Pathfinder descent [Magalhaes et al.,

1999] are similar to the Viking-derived data.

For paleo-conditions on Mars, we allow the

surface pressure to be the same as Earth,

keeping everything else the same as the current

Mars atmosphere.

The temperature profiles used in this

comparison and in the modeling examples

below are shown in Figure 1. The temperature

profile for Mars has been simplified for

modeling purposes. Pressure profiles, shown

in Figure 2, are derived from the expression

P(z) = P(0) exp(-z/H), where P(0) is the

surface pressure, and H is the atmospheric

scale height. Table 2 summarizes these and

other constants assumed for each of the model

atmospheres.

The density profile for each

atmosphere is strongly controlled by the

pressure. To find the density at each step, we

have used the ideal gas relationship 9_(z) =

P(z)/R_T(z). To get a better feel for the

density of each atmosphere, we have

calculated the mean free path as a function of

altitude. The mean free path is the average

distance that a molecule travels before

colliding with another molecule. Most

introductory physics texts (e.g., Sears and

Zemansky [1967]) discuss the mean free path

to some extent. The mean free path, L(z), can

be estimated using the expression

L(z)- sin(n/4)
o n(z) (4)

where n(z) is the molecular density:

n(z) : P(z)N

R _ mw T(z)

and N is Avogadro's Number (N = 6.0225 x

1023). For consistency with the Handbook of

Chemistry and Physics, we have used o =

4.165 x 10 15 cm z in (4).

Figure 3 is a plot of the mean free path
as a function of altitude on both Earth and

Mars. For illustrative purposes, we have

highlighted a few interesting things as well.

First, we have indicated the maximum
estimated altitude of the Pinatubo column from

the 1991 explosive eruption of- 35 - 40 km

[Self et al., 1994]. While other eruptions

produced larger volumes than Pinatubo, there

is no evidence that plumes from these

eruptions would have extended much further

into the atmosphere. The maximum plume

height during the Krakatau eruption of 1883

has been estimated at -45 km [Self, 1992].

The eruption plume from Toba (73,500 bp),

the largest known explosive volcanic event of

the late Quaternary, has been estimated at only

27 - 37 km [Rampino and Self, 1992]. The

seeming coincidence that all these plumes

seem to have similar maximum heights
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suggests that there may be some empirical
terrestrial limit around 40 km that is not

explained by current plume models.

The mean free path at this empirical

terrestrial limit is very similar to the mean free

path at the surface on Mars. The range of

mean free paths where we see convecting

plumes on Earth is between 10 -3 and 10-5 cm

Out of interest, we have also highlighted the

fact that the average distance between

molecular collisions at altitudes where

convective plume rise has been predicted on

Mars is 1 - 100 meters! Convectively rising

plumes must quickly attain an internal density

that is similar in magnitude to the ambient

atmosphere. This means that at these extreme

altitudes, the volcanic plume must also have a

mean free path equivalent to the atmosphere at

that height. Intuitively, it seems unlikely that

particles that must travel even a meter before

a collision are capable of entraining anything.

We have also indicated that even the

U2 aircraft can only fly as high as about 22

km. Beyond this altitude, there is not enough

atmosphere to create aerodynamic lift.

Eyewitness accounts of atomic bomb tests

indicate that these powerful blasts cannot

produce plumes that exceed 9 12 km.

Furthermore, the firestorm of Hamburg,

Germany, in 1943 attained temperatures in

excess of 1000 C for a prolonged period,

perhaps as much as 6 hrs. Some estimates

suggest the temperature may have reached

3000 C, yet the plume only attained a height of

9-12 km kilometers [Cartier and Fendell,

1983].

The most basic assumptions of the

convective rise models is that of balanced

pressure inside and outside the plume. One of

the most obvious ways to violate this

assumption is to have vertical rise or radial

expansion velocities that exceed the speed of

sound. Haliday and Resnick [1977] give the

speed of sound as

v(z)=I yP(z)p (z) (6)

where y is the ratio of specific heats (Table 2).

For N2 and O a which make up 98.9% of

Earth's atmosphere, y = 1.4. For a primarily

CO2 atmosphere, y = 1.3. Figure 4 compares

the speed of sound on Earth and Mars.

According to the Handbook of Chemistry and

Physics, the concept of the speed of sound in

Earth's atmosphere loses its applicability at

about 90 km where the mean free path of air

molecules approaches the wavelengths of

sound waves (- 4 cm). This loss of definition
occurs at about 70 km on Mars.

The balanced pressure assumption can

also be violated even when plume velocities

are less than the speed of sound. Studies of

firestorms indicate that the basic pressure

balance assumption breaks down with the

onset of a rotational motion in the column that

is not accounted for by Morton types of

formulations. This rotation causes a pressure

gradient and may reduce the ability to entrain

ambient air (i.e., _) by as much as two orders

of magnitude. The validity of Morton

formulations has been tested only up to the

Long Beach firestorm, which attained a

maximum plume height of only several

kilometers [Carrier and Fendell, 1983].

Validity Issues

The discussion above regarding

ambient atmospheric conditions suggests that

there may be some point in Mars' atmosphere

where the ambient density is not sufficient for
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plumes to rise convectively. Certainly, there is

cause for further investigation. The crux of

the problem is where to establish the limit of

validity for the system of ordinary differential

equations in (1) - (3). Here, we attempt to
establish where the model breaks down. For

the purpose of the following discussions, we

will use the basic boundary conditions in Table

3. These are typical boundary conditions that

have been used for explosive eruptions on

Mars that can be found in the literature (e.g.,

Hort and Weitz [2001]). For comparison, we

have shown the parameters for an eruption on

Earth, and into a more dense early Mars

atmosphere, with equivalent mass eruption

rates. Unless otherwise indicated, the volatile

is assumed to be water vapor.

It is critical to this discussion to

understand that the model cannot predict the

maximum plume height directly because the

system of equations (1) - (3) have a singularity

at u = 0. As a result of this singularity, both

the radius and velocity terms change very

rapidly near the top [Glaze and Baloga, 1996].

Previous terrestrial studies have estimated the

maximum predicted plume height on Earth by

taking the asymptotic solution near this

boundary layer. In our previous studies [Glaze

and Baloga, 1996; Glaze et al., 1997], this

asymptotic solution has been taken as the point

at which the upward velocity falls below some

set value (usually 10 m/s for large eruptions).

On Earth, this cutoff seems to give a

reasonable estimate of the limit of validity for

the convective rise model. The predicted

heights shown in Table 3 correspond to the

points at which the velocity falls below 10 m/s

as a default case. On Mars, however, this

criterion seems insufficient. As can be seen

from Table 3, the upward velocity does not

drop below 10 m/s until 133 km above the

vent. This maximum height is consistent with

other predicted plume heights cited in the

literature for similar mass eruption rates

[Wilson and Head, 1994; Kusanagi and

Matsui, 1998; Hort and Weitz, 2001]. The

following discussions indicate a variety of

other considerations that make applications of

the model invalid well below this altitude.

lo Comparison:

We know it is absurd to assume

convection on Io where we have visual

evidence of ballistic dynamics (e.g., Strom et

al. [1981] for early Voyager reports; and

Glaze and Baloga [2000] for modeling studies

of ballistic dynamics). However, the
convective model discussed here cannot make

this distinction on its own. If we provide it

with boundary conditions, it will attempt to

predict convective plume rise, even under

absurd conditions.

As an illustration of this, we have run

the model for an average Io atmosphere

(understanding that the atmosphere on Io

changes dramatically between day and night).

For modeling purposes, we have assumed an

average surface temperature of 110 K that

warms slightly with altitude, a surface pressure

of 1.7 x 10 -8 atm (.0017 Pa), and an

atmospheric composition of SO2. These

constraints result in an atmospheric density 10

million times less than Earth. For boundary

conditions similar to those on Mars in Table 3

(except gravitational force of 1.8 m s2), and a

magmatic volatile composition that is 50%

SO z and 50% H20 , the model blindly predicts

that a plume can convect to heights in excess

of 150 km on Io.

While we know that explosive

eruptions on Io do produce plumes up to 300

km high [McEwen and Soderblom, 1983], the

conditions described above would only

generate a -15 km ballistic plume. These
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plumes are clearly driven by very different

mechanisms than those assumed by the model.

For the Mars case then, the primary question

is where do the basic assumptions of the

convective rise model break down?

Speed of Sound:

One of the most basic assumptions of

the convective rise model is that the pressure

within the plume is always identically equal to

the ambient pressure at that altitude. If the

plume is moving slowly enough and if the

radius is small enough, this is a plausible

assumption. In other words, as long as the

time it takes for the effects of the ambient

pressure to propagate throughout the entirety

of the plume volume is small compared to each

time step, this assumption should be

reasonable. While it is difficult to identify a

specific cutoff where this assumption is

violated, it is clearly violated at any point when

the vertical rise velocity exceeds the ambient

speed of sound.

It has been postulated that initial

eruption velocities on Mars may well exceed

the speed of sound [Wilson and Head, 1994;

Hort and Weitz, 2001 ]. However, convective

rise models should never use such velocities as

boundary conditions. As a note, the
convective models are not particularly

sensitive to the eruption velocity. For

example, increasing the initial velocity for

Mars in Table 3 to Uo = 500 m/s, the 10 m/s

plume cutoff predicts a maximum height of

141 km (a 6% difference). For this study, we

only examine results for vent velocities that are

below the estimated speed of sound at the

surface (-236 m/s).

Figure 5 shows the velocity profile

predicted by the convective model using the

current Mars boundary conditions defined in

Table 3. The general shape of the velocity

profile is similar to that predicted for large

volcanic eruptions on Earth. For large

eruptions, the bulk plume density just above

the vent can be significantly greater than the

ambient density. Thus, the plume is not

buoyant and the column material will slow

down as it rises. A convecting plume,

however, is simultaneously entraining ambient

atmosphere which expands as it is heated by

the plume. If the eruption has enough energy,

the plume will become buoyant before it loses

all of its initial momentum.

The unusual feature of the modeled

velocity profile for Mars is that the

convectively driven velocity far exceeds the

initial eruption velocity. In addition, the

upward velocity exceeds even the ambient

speed of sound at an altitude of-34 km

Thus, the convective rise model cannot be

valid above this point for two reasons. First,

the model in no way accounts for the

atmospheric shocks caused by such velocities.

Second, continuing past this point certainly

violates the basic pressure balance assumption

upon which the convective rise model is based.

Radial Expansion:

Ignoring the vertical velocity

arguments made above, we need to recall that

all the variables in the system of equations (1)

- (3) are solved simultaneously. This means

that if one wants to accept the predicted plume

height given in Table 3, one must be willing to

accept ALL the solutions for all the variables

given in (1), (2) and (3). In particular, there

are several anomalous features of the predicted

plume radius that must be accounted for in

some way.

The first, and possibly most alarming

anomaly, is the predicted radius itself. Figure
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6 shows the radial solution that corresponds

identically to the velocity solution in Figure 5.

If one accepts the final plume height at the

point where u < 10 m/s, then one must also

accept a plume radius at that point that is in

excess of 44,000 km! The circumference of

Mars at an altitude of 133 km is - 22,000 km,

so this would imply that the entire plume top

could wrap around Mars four times.

The dramatic increase in the radius

implies entrainment of an enormous volume of

ambient atmosphere. Aside from the sheer

volume &entrained air, the model completely

ignores the simultaneous dynamics that would

be required for an atmosphere to

accommodate this scale of ingestion.

We can immediately see from visual

inspection, at the scale of Figure 6, that the

radial variable is clearly in a boundary layer

regime above 110 - 120 km where the
convective model cannot be valid. But where

does the radial solution go wrong? Figure 7,

shows the radius solution in the altitude range

up to about 110 km. However, the radius is

already changing very rapidly by about 80 km.

This implies that the model may break down

even before this point.

To understand what is happening with

the radius solution, we have estimated the

radial expansion velocity (dr/dt) as a function

of altitude. To do this, we simply difference

the predicted radius on either side of each step

in z. We then divide this Ar by the time it

takes the control volume to travel the

integration step size (5 m was used in all

calculations) using the predicted velocity at

that step.

Figure 8 shows the radial expansion

velocity along with the vertical velocity and

speed of sound for comparison. We see

immediately, that the radial expansion velocity

exceeds the ambient speed of sound even

before the vertical velocity, at a height of-27

km. It can also be seen from Figure 8 that

there is a complex relationship between the

vertical and radial velocities. One of the

implicit assumptions of the convective rise

model is that the primary movement of the

plume is upward, not outward (i.e., the radial

velocity should be small compared to the

vertical). However, the radial velocity far

exceeds the vertical velocity at altitudes above

-22 km In addition, there is some question as

to the validity of the initial assumption at

heights above -9 km where the two

components almost cross.

The driver that is causing the radial

solution to break down is not immediately

obvious. Figure 9, however, does shed some

light on the issue. In this figure, both the bulk

plume density and the ambient atmospheric

densities are plotted as functions of altitude. It

can be seen from Figure 9 that the plume

becomes buoyant (less dense than ambient) at

about 10 km. Above that point, the density

difference is extremely small (10 .4 kg/m 3 at 10

km to 10 5 kg/m 3 at 50 km). From the form of

(2) it can be seen that in order to conserve

momentum when (p_ - PB) is very small, r

must become quite large to compensate. The

fact that this density difference is so small

raises several important questions. The first is

what happens when there are small
fluctuations or deviations from our

assumptions in the atmospheric conditions?

Glaze and Baloga [1996] showed that

systematic variation of 2%/km in the cooling

rate of a convecting plume can reduce the

predicted plume height by 1/3. Furthermore,

the model assumes that any changes in plume

temperature and density are felt throughout

the plume volume instantaneously. For plume
radii observed on Earth that exceed several
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kilometers, this requires some stretch of the

imagination. For plumes with predicted radii

exceeding 100's of km on Mars, it seems
ridiculous.

Discussion

Based on the discussions above, we

believe that volcanic plumes cannot rise

convectively to excessive heights in the current

Mars atmosphere. For the example given,

convection quickly breaks down within the
first 10 kin. This conclusion is in stark

contrast to other studies that predict

convective plumes in excess of 100 km. While

volcanic plumes may indeed go higher than 10

kin, there must be some other mechanism that

dominates the transport dynamics.

One possible reason for the breakdown

of the convection model is most likely in the

exclusion of 2nd order effects, such as

diffusion of momentum, turbulence, or energy.

It may be that for conditions on Mars, these

effects play a much more significant role.

Diffusion and rotation serve as an energy sink

and may cause the bulk upward velocity of the

plume to decrease at a rate greater than

predicted by the simplified approachl With the

plumes on Mars we have found a unique case

where the density difference between the

plume and ambient is extremely small, and yet

the plume density can never quite "catch up"

to the atmosphere. Another possibility is the

inability to maintain the confluence of gas and

particle motions. As the particles carry the

bulk of the heat content, this may dramatically

change the internal dynamics of the plume.

Unfortunately, none of this discussion

helps us to estimate how high material erupted

explosively on Mars may be transported

realistically. We can, however, constrain the

minimum plausible limits. The first constraint

that we can place on plume rise is a minimum

estimate based on a purely ballistic vertical

trajectory. The maximum height attained by a

ballistic mass is solely dependent on the

velocity at the vent and gravity, H = Uo2/2g.

For a vent velocity of 230 m/s, we can safely

say that a plume would have to be a minimum

of 7 km high.

Now, one possibility is to apply the

convective model up to about 9 km (where we

believe we are not violating any basic

assumptions), and then allow the plume to

continue upward ballistically. At 9 kin, the

plume density is still greater than the ambient

(i.e., not yet buoyant) but, the plume would

continue to rise ballistically as a result of its

momentum. The model predicts that the plume

has a bulk vertical velocity of-106 m/s at 9

krn. Thus, if no more entrainment/convection

occurs, the plume would rise an additional 1.5

kin, for a total of 10.5 kin.

One interesting alternative to consider

is the possibility that there is never enough

atmosphere for the plume to convect, but that

the plume material could still rise due to

momentum and buoyancy. This is equivalent

to setting the entrainment constant equal to

0.0 (no entrainment). For the initial conditions

given in Table 3 and a = 0, a plume would rise

to a height of about 8 km

All of these activities lead to the

inference that explosive eruptions on Mars

could plausibly inject material to altitudes

between 10, or perhaps 20 km, under current

conditions. The impact of this conclusion is

that these eruptions would not be capable of

distributing material over significant distances.

It is also of interest to consider

eruptions into the early Mars atmosphere.
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Assuming a surface pressure of the same order

of magnitude as that currently found on Earth,

the density of the early Mars atmosphere

would have been more dense than our own.

The higher density results from bulk gas

constants and atmospheric temperatures that

are less than Earth. The higher density

atmosphere and lower gravity should both
result in conditions conducive to convective

rise.

But, just how high would we expect

plumes to go, and would any of the concerns

discussed above become issues? In Table 3 we

show the predicted maximum height for a

plume with the same mass eruption rate as the

example in the current Mars atmosphere. The

convective model predicts that this plume

would rise to a height of 31 km, about 50%

higher than the same plume on Earth. This

result is consistent with intuition that plumes

should go somewhat higher in a lower gravity,

higher density environment. The initial

boundary conditions for this example are also

within reason, with a vent radius of 100 m, and

eruption velocities below the speed of sound.

Close inspection of the velocity and radial

solution indicates that the violations noted

above do not occur under these conditions.

Thus, it seems reasonable to model this event

as a convecting plume.

We have also explored the possibility

of greater eruption rates to determine if there

is a limit to how high plumes could go in an

early Mars atmosphere. The convective rise

model does, indeed, have a limit of 1.4 x 10 9

kg/s. Mass eruption rates exceeding this limit

produce plumes that violate all the criteria

discussed for eruptions into the current

atmosphere. This mass eruption rate is only 1

order of magnitude greater than the examples

give in Table 3, and is equivalent to a vent size

of 300 m (with everything else held the same).

The maximum predicted plume height resulting

from this mass eruption rate is approximately

65 km. Again, this apparent limit is about

50% higher than the empirical limit observed
on Earth.

The limit of 65 km under early Mars

conditions, while somewhat higher than

terrestrial plumes, is probably not sufficient to

distribute volcanic ash globally. While

aerosols are known to have stayed aloft for

months to years following the Pinatubo

[Trepte, 1993] and El Chichon eruptions

[Pollack et al., 1983], ash particles are
believed to have fallen out over a matter of

hours to days. The most important implication

of this conclusion is that it seems unlikely that

volcanoes could be responsible for broad scale

mantling and the layered terrain observed in

MOC images. Volcanoes could have,

however, been major suppliers of volatiles and

aerosols into the atmosphere as well as a

mechanism for volatile distribution processes.

Conclusions

Based on our analyses, maximum

plume heights on Mars extend only a few tens

of kilometers and are comparable to those on

Earth. Volcanic plumes that rise to heights in

excess of 100 km in Mars' current atmosphere

are highly improbable. The low density of the

current atmosphere simply cannot support

convection. The extreme maximum plume

heights predicted by other investigators have

resulted from a breakdown of the physics

model used to describe the plume dynamics.

We have demonstrated the breakdown of

model validity in a variety of ways:

1) Speed of sound violations: The models are

totally inapplicable when the speed of sound is

exceeded or the atmosphere is too thin to
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permit definition of the speed of sound. For

the example of a moderately large eruption

discussed, we have shown that both the

vertical and radial velocity components violate

this assumption at 34 km and 27 km,

respectively. Thus the model is most certainly

invalid at heights above 27 km where no

account is made for atmospheric shocks or the

fact that the plume is no longer pressure

balanced. The assumption of pressure balance

may even be violated long before the velocity

components exceed the speed of sound (on

Earth as well as Mars).

2) Radial expansion: One of the most basic,

implicit assumptions of convective rise models

is that plumes rise primarily upward, not

outward. However, the radial expansion

velocity of the example plume is of similar

magnitude to the vertical velocity by about 9

kin, and actually exceeds the vertical velocity

at a height of 22 km In addition, were we to

trust the model results above these heights, the

radius &the plume quickly exceeds the plume

height by orders of magnitude. At a minimum,

this excessive expansion indicates that one

should be focusing on the radial dynamics, as

opposed to vertical. Moreover, the entrained

ambient air must be mixed throughout each

horizontal cross section of the plume, within

the time it takes to travel each time step. As

the plume continues to expand, this horizontal

mixing assumption becomes increasingly less

plausible.

3) Ihe availability of ambient air: The reason

for excessive radial expansion is that there is

not sufficient ambient air available to the

plume for entrainment. The density of the

atmosphere is so low, that the plume must

expand large distances to find sufficient

atmospheric mass to satisfy the conservation

equation requirements. However, the model

in no way accounts for the affect of the plume

on the dynamics of the atmosphere. At a

minimum, the atmosphere requires separate

modeling.

It may well be that volcanoes can inject

materials to extreme heights, but it seems

highly improbable that convection could

possibly be capable. We have shown that for

mass eruption rates equivalent to moderately

large eruptions on Earth, an eruption plume on

Mars could only convect as high as about 9
km. A combination of convection and ballistic

transport results in plume heights of only 10

km. It is possible that material produced in

explosive volcanic eruptions could go

somewhat higher, but it would have to be

through some other, mechanism that has not

yet been modeled.

An early Mars atmosphere was much

more capable of sustaining convecting plumes.

Consistent with results of other researchers, an

eruption of similar magnitude to the current

Mars example would climb to a height of 31

km, -50% higher than the equivalent plume on

Earth. However, there appears to be a limit to

the validity of the models on early Mars as

well. This limit of validity occurs at an

eruption rate of 1.4 x 10 9 kg/s (1 order of

magnitude larger than the 31 km high plume)

and produces plumes with a maximum height

of 65 km Eruption conditions exceeding this

mass eruption rate violate model assumptions

in the same ways as described above.

The net result of these studies is that

explosive volcanic eruption plumes can not

rise as high as previously projected in the

literature. Consequently, injection heights for

ash and volatiles have been overestimated, as

well as the fall heights of pyroclastic flows.

Layered deposits and mantles are currently

being recognized in the high resolution Mars

images. Conjectures often arise about volcanic
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airfall or pyroclastic flows from distant

sources. Our results indicate that these

sources should not be much farther than

analogous deposits on Earth. Whether the

current atmosphere or paleo-atmosphere is

considered, injection of only a few tens of

kilometers into the atmosphere need be

considered. Thus, this localization of volcanic

effluents implies a local to regional emphasis

for volatile transport processes in contrast to

large-scale, global atmospheric circulation.

Our recommendation for improving the

buoyant plume rise models is to move toward

a more generalized form the Navier-Stokes

equations, which are second-order,

supplemented by appropriate constraining

equations (atmosphere, equations of state,

etc). It is most essential to begin addressing

the diffusion of mass, turbulent eddies,

momentum, and heat in the transitional regime,

where differences between atmospheric

properties (velocities, eddies, heat) are really

second-order effects. For the unique

conditions on Mars, it may well be that these

second-order effects become important within

the first 10 - 20 km of rise.
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Variable Definition

CB

Cm

g

H

L(z)

mw

N

n(z)

p(z)

r

T(z)

U

v

z

Y

0

PB

P_

0

Bulk specific heat for plume (J K 1 kg _)

Bulk atmospheric specific heat (J K _ kg _)

Acceleration due to gravity (m s z)

Maximum plume height (m)

Mean free path (m)

Molecular weight (kg/mol)

Avogadro's number (6.0225 x 1023)

Molecular density (molecules m3)

Pressure (Pa)

Plume radius (m)

Bulk atmospheric gas constant (J K _ kg _)

Atmospheric temperature (K)

Vertical plume velocity (m s"1)

Speed of sound (m s-a)

Vertical coordinate (m)

Entrainment parameter (= .09)

Ratio of specific heats

Bulk plume temperature (K)

Atmospheric density (kg m 3)

Bulk plume density (kg m 3)

Mean molecular cross sectional area (m z)

Fraction of control volume occupied by entrained gas

Fraction of control volume occupied by magmatic gas
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Table 2. Summary of atmospheric parameters.

Parameter Earth Mars - current

Page 18

Mars-paleo

Surface Pressure, P(0)

Scale Height, H

Bulk Gas Constant, R_

Bulk Molecular Weight, mw

Gravity, g

Specific Heat Ratio, y = Cp/Cv

1.0 atm .01 atm 1.0 atm

7km 8km 8km

287 J K "1kg "1 191 J K -I kg "1 191 J K -1 kg "l

28.2 g/mol 43.49 g/mol 43.49 g/mol

9.8 m s2 3.7 m s2 3.7 m s 2

1.4 1.3 1.3

Table 3. Boundary conditions used in examples.

Parameter Earth Mars-current Mars-paleo

Radius at Source (ro)

Velocity at Source (Uo)

Temperature at Source(0o)

Gas Mass Fraction of Magma(no)

Mass Eruption Rate (PoUonro 2)

Maximum Predicted Height

200 m 1000 m 100 m

300 m/s 230 m/s 230 m/s

1000 K 1000 K 1000 K

5% 1% 5%

1.6 x l0 g kg/s 1.6 x l0 g kg/s 1.6 x l0 g kg/s

21 km 133 km 31 km
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Figure Captions

Figure 1. Atmospheric temperatures as a function of altitude assumed in model calculations.

Temperatures for Earth are for the US Standard Atmosphere. Temperatures for Mars

and Paleo-Mars are a simplification of those reported by Sief and Kirk [1977].

Figure 2. Atmospheric pressures as a function of altitude assumed in model calculations.

Pressures for Earth are for the US Standard Atmosphere. Pressures for Mars and

Paleo-Mars assumed surface pressures of 1.0 x 103 Pa and 1.0 x 10 5 Pa, respectively.

Both profiles assumed a scale height of 8 km

Figure 3. Mean flee path as a function of altitude for Earth, Mars and Paleo-Mars. Also noted

are the maximum altitude of the Pinatubo eruption column, the maximum altitude at

which the U2 aircraft can fly, and the maximum observed altitudes for atomic bomb

tests and firestorms.

Figure 4. Local speed of sound as a function of altitude for Earth, Mars and Paleo-Mars. Note

that current and early Mars have similar profiles for speed of sound resulting from the

dependence on temperature (we have assumed the same temperature profile for both

cases). Also note that the curves stop at some maximum altitude, above which the

speed of sound is not defined.

Figure 5. Bulk vertical velocity as a function of altitude for the Mars boundary conditions given

in Table 3. The local speed of sound is also shown for comparison.

Figure 6. Solution for plume radius as a function of altitude for the Mars boundary conditions

given in Table 3. Note that the radii shown are in kilometers. The full solution

corresponding to the velocity solution in Figure 5 is shown.

Figure 7. Solution for plume radius as a function of altitude for the Mars boundary conditions

given in Table 3. This is the same solution as that shown in Figure 6, but focused only
on radii between 0 and 120 km.

Figure 8. Comparison of radial expansion and vertical velocities for the Mars boundary

conditions given in Table 3. Local speed of sound is also shown. Note that the

assumption of small radial velocity relative to vertical is violated before the plume
reaches 10 km altitude.

Figure 9. Comparison of ambient atmospheric density and bulk plume density, as functions of

altitude, for the Mars boundary conditions given in Table 3.
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Abstract. Transport and emplacement of pahoehoe lava is often dominated by random influences,

such as budding, small-scale variations in topography, and variations in how the skin cools, stretches,

and cracks. We develop a random-walk model to describe the transport of small pahoehoe lobes

when random effects are a significant influence on emplacement. We derive a stochastic formalism

for random movements on a two-dimensional grid. Our formulation features correlation and bias that

determine the degree of randomness in the random walk of each parcel of lava. We compare

qualitative and quantitative predictions of the random walk with observations and data for pahoehoe

lobes in Hawaii. It is found that a correlated random walk quantitatively describes lobe thickness

transects whereas the uncorrelated random walk only reproduces the meandering of small

monofilaments of a few toes. Correlation expresses momentum effects and a chain of memory from

the front to the source of lava supply. We show that the correlated random walk features a channel-

fomling regime that decays with distance from the source. The theory can also be interpreted in the

context of a time-dependent planar flow. When many parcels of lava participate, the overall shape

of a one-dimensional lobe has the appearance of a continuum wave. The types of processes contained

in the random walk model explain the multitude of concurrent or overriding features found in broad

fields of toes. The basic formalism can thus be extended to simulate large fields of emplaced

pahoehoe in either terrestrial or planetary settings.

1. Introduction

Broad pahoehoe flow fields, such as

shown in Figure 1, are generally complex

collections of much smaller, sometimes

amorphous features. Such pahoehoe flow

fields are often built up by the emplacement of

these small features at many different

locations sequentially or simultaneously.

They may be interspersed with a'a lobes in a

complex time-sequencing of emplacements

[e.g., Nichols, 1936; Walker, 1972; Swanson,

1973; Holcomb, 1976]. The fact that flow

fields are not comprised of a handful of

simple discrete flow units, like well-defined

and isolated a'a lobes, makes the emplacement

process extremely difficult to model. Thus, to

better understand the flow fields as a whole,

we begin by investigating the emplacement of

typical small features observed within flow

fields. The ultimate objective of this work is

to eventually simulate large flow fields for

comparison with image and topography data
for lava flows on Earth and other terrestrial

planets.

When one observes the emplacement

of pahoehoe toes, amorphous fields of toes,

and certain kinds of lobes, it becomes

immediately evident that a host of random

processes influence emplacement. These

random influences may include topographic

variations at a variety of scales and small-

scale random processes associated with the
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cooling, cracking, and stretching of the outer
skin. There are also local random effects

associated with budding, channel, and lobe

formation, interactions with active or

emplaced parcels, and fluctuations in the

supply and distribution of lava.

There are, of course, systematic and

deterministic influences on pahoehoe

emplacement as well. While fluid, a parcel of

lava will tend to flow downslope. While in

motion, a fluid element carries momentum

and is subject to forces from neighboring

elements or boundaries. One would hope to

model pahoehoe emplacement with a

generalized Navier-Stokes equation,

supplemented by governing equations for

other processes such as heat transfer, phase

changes, etc. However, we cannot apply such

deterministic equations without modeling all

of the small scale transport processes,

topographic influences, and local fluctuations

in lava supply and boundary conditions

separately. In principal this may be possible,

but it would be impractical to attempt a

completely deterministic description of the

complexity observed in the field. A stochastic

formalism may be employed to describe both

the deterministic and random influences that

act simultaneously on the lava parcels.

We present here such a stochastic

formalism that treats the transport of a parcel

of lava as a random walk. But, what exactly

does the term "random walk" mean? The

classical approach to the development of a

random walk treats a particle beginning at

some initial location, then moving to all

subsequent locations based on some

prescribed set of probability laws. At any step,

the movement of the particle to the next

position is a random variable. On any

particular step, or for any sequence of steps,

the outcome cannot be predicted with

complete certainty. All the movements of the

particle have an element of chance that is

described by probability concepts, rather than

exact, deterministic ones.

There are many different types of

random walks (e.g., classical uncorrelated

Brownian motion, correlated, biased, Levy-

flights, and fractal generalizations [see, for

example: Chandrasekhar, 1943; Wax, 1954;

Zauderer, 1983; Klafter et al.,1996; and

references cited therein]). Some types of

random walks are trivial to prescribe and

apply to real physical processes. There are

also cases where even the mathematical

formalism defied exposition for almost fifty

years [Goldstein, 1951; Zauderer, 1983].

Even though random effects tend to confuse

initial observations in the field, it is clear that

there are different styles of pahoehoe

emplacement. At one extreme, a simple linear

filament composed of a few toes may grow at

the front, extending the filament by one unit.

Then the process may be repeated. Figure 2

shows such an example. At the other extreme

are the highly complex fields that may contain

toes, lobes of toes, small sheets and channels,

and other forms that are even difficult to

name. In complex fields, toes, lobes, sheets,

and channels can form concurrently and may

override earlier features [Nichols, 1936;

Walker, 1972; Swanson, 1973; Holcomb,

1976; Jurado-Chichay and Rowland, 1995;

Crown and Baloga, 1999].

These different regimes of pahoehoe

emplacement suggest that pahoehoe

emplacement could be associated with

different types of random walks. We

formulate a very general random walk model

for the movement of parcels of lava on a fixed

spatial grid. This model determines the

probabilistic distribution on the grid for

different types of random walks. However,
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one cannot determine the type of random walk

applicable to different emplacement regimes

from a priori theoretical considerations. This

must be done by field observations and

data/theory comparisons. Our model does not

address the small-scale physics of budding

and toe formation, but rather, focuses on the

large scale movements of an ensemble of

parcels.

The main step in any random walk

formulation is to determine the probability

distribution for the locations of a parcel or

particle in space or time. Once this is done for

a given random walk, all that can be known

about single or multiple particle movements

(e.g., means, standard deviations, moments)

can be determined by computation. When

multiple particles are released from the origin,

this probability distribution determines the

concentration of particles at any location in

space or time. In our application, this

probability distribution represents the

thickness ofa pahoehoe flow lobe.

Before presenting the random walk

model, we first describe some specific

pahoehoe features found at typical locations in
Hawaii. We have studied features where the

influence of random effects was at least as

important as the deterministic ones. Given the

wide variety of emplacement behaviors, we

carefully define what we expect the random

walk model to accomplish in the subsequent

section. Next we formulate the emplacement

of pahoehoe as a random walk characterized

by two parameters. One parameter determines

the degree of bias in the random walk, the

other is a measure of the correlation between

steps. Readers may be familiar with the

simplest form of a random walk, uncorrelated

Brownian motion [e.g., Chandrasekhar, 1943].

Our derivation is designed to contain

uncorrelated Brownian motion as one limiting

form. Our mathematical formulation extends

this random walk so that a bias could be

included that might serve to represent the

tendency for movement in the downslope

direction More importantly, our extension

also includes the difficult concept of

correlation among the steps of a random walk.

This reflects a chain of memory in the

movements of a parcel due to momentum and

the influences of neighboring parcels. A key

aspect of our general formulation is that it is

set up recursively so that it can be applied

repetitively to any number of steps or fluid

elements.

For comparison, we have made

observations and collected dimensional data

on small pahoehoe lobes from many sites in

Hawaii. We compare the qualitative

predictions of the model for different types of

random walks to what is seen in the field. We

also compare measured cross-sections with

theoretical predictions. It is shown that the

correlated random walk describes a host of

important features found in the field that

cannot be explained by an uncorrelated

random walk. As noted in the discussion, the

theory can also be interpreted in the context of

a time-dependent two-dimensional planar

flow. When many parcels of lava participate,

the overall time-dependent shape of a two-

dimensional lobes has the appearance of a

continuum wave. In conclusion, we identify

some possibilities for future detailed

data/theory comparisons and extensions to

simulations of large pahoehoe fields.

2. Field Observations

We begin by summarizing our

observations of active and inactive pahoehoe

lava flows in Hawaii. The intent of our initial

observations was to identify the qualitative
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character of random effects on pahoehoe

emplacement. These observations were

expected to guide the development of a model

of emplacement that would highlight the role

of random effects. We have observed active

toe emplacement at the current eruption of

Pu'u O'o at Kilauea and numerous small

inactive features on older flow units, including

the 1969-1974 eruption of Mauna Ulu at

Kilauea [Swanson, 1973; Holcomb, 1976],

and prehistoric flows from Mauna Loa and

Hualalai. We have looked at a range of small

mappable pahoehoe units, comprised of

apparently gas-rich to fully-degassed lava in a

variety of settings, including steep and

shallow slopes and different substrates

[Wilmoth and Walker, 1993; Crown and

Baloga, 1999].

For the purpose of developing a

stochastic model, we have focused on a few

simple features that permit us to describe the

nature of the random effect. These features

include isolated filaments of toes, monolayers

of toes and similar mappab[e units [Crown

and Baloga, 1999], and small lobes that were

isolated, in pre-existing channels, or in contact

with other lobes. Simple sheets ofpahoehoe

that appeared to have flowed as a single

continuum unit according to classical viscous

dynamics were not of interest for this study.

Neither do we specifically address other

formations, such as squeeze-ups from rifted

tumuli, or overflows from channels [e.g.,

Jurado-Chichay and Rowland, 1995].

To develop precise objectives for a

stochastic model, we must be clear about the

feature definitions under study and their
characteristics relative to the model. Our

descriptions of units and observations are as
follows:

Isolated filaments and monolayers:

Isolated filaments of a small number of

toes, typically a few to about a dozen, are

common in Hawaii (Figure 2). Often such a

filament advances by budding from the

forward toe, but toes may also form toward

the side. There is random meandering as the

filament advances but there is usually an

overall directionality to the orientations of the

toes. When unconfined by pre-existing

topography, the thickness of such deposits is

generally equivalent to one or two toes. It is

not always possible to tell where the next toe

will form or its orientation, or what the final

shape of the filament will be. Such filaments

are often found on steep local slopes (>15

degrees) and pali. The directionality of the

filament generally aligns with the downslope

direction, as would be expected, and the toes

tend to be distended. However, isolated

filaments are also found on small virtually flat

slopes, yet they often retain a directionality.

This may be due to the initial direction of lava

from the source or the topographic slope at the

scale of the toes or filament. In the field, such

small-scale topography is often difficult or

impossible to discern. On flat areas,

emplacement may also take the form a broad

sheet-like analog of a linear filament. This has

been called a monolayer [Crown and Baloga,

1999]. Instead of a single strand, there is a

broad sheet of toes that is typically one or two

toes thick with a surface of mappable units.

Isolated and Laterally Confined Lobes:

We consider a lobe to be isolated if the

margins were emplaced without obvious

interference from pre-existing topographic

influences (Figure 3). Isolated lobes are often

composed of a few dozen to a few hundred

parcels of lava. These parcels form toes, buds,

and a variety of small mappable units when

they are located at the outer surface of the lobe

[Crown and Baloga, 1999] Lobes can take the
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form piles that have transverse profiles with a

central ridge, a crude bilateral symmetry, and

a decay in the thickness of the deposit toward

the margin. The lobate features we discuss

here typically have a width of several meters

to as much as ten meters and a length of about

five meters to as much as a hundred. The outer

surface of the deposit is composed of toes and

there are often interior parcels of lava that

never had the opportunity to form toes.

Transverse thickness profiles initially seemed

to be reminiscent of bell-shaped Gaussian

cross-sections, modified by the the discrete

nature of the toes themselves and the natural

variability of the toe formation process. At a

small scale, the lobe emplacement process is

dominated by the formation of individual toes.

However, at the scale of the lobe itself, the

advancing motion may often resemble a

continuum flow.

Where lobes are laterally confined, the

cross-section shape tends to have a relatively

flat centroid and a relatively rapid decay

toward the margins. As with isolated lobes,

this is sometimes reminiscent of a bell-shaped

curve, although the toe formation process is

not allowed to continue past the margins.

Figure 4 shows a confined lobe where the

lateral extent of the lobe was influenced by

pre-existing topography. Unfortunately,

"lateral confinement" is not always easy to

distinguish in the field, as we initially

preconceived. Based on a general qualitative

survey of dozens of such features, it appears

that the flow itself often provides its own

lateral confinement through the emplacement

of toes. This suggests that lateral self-

confinement is as important, or perhaps even

more important than the ambient topography

in determining the cross-sectional shape of the

deposit. Although more data is needed, we do

not believe there is a systematic difference

between the cross-sectional shapes of lobes

that are confined and those that are not.

Broad amorphous fields:

Broad, complex flow fields result

when multiple modes of lava emplacement

occur within the same area or are

superimposed on each other. Such fields may

be composed of hundreds or thousands of

toes, isolated and confined lobes, sheets,

channels, and other features. When a broad

field is still active, one can observe a toe form

in one location while other toes intermittently

form tens of meters away. As one area

becomes inactive, others may become active

at seemingly random locations in the field.

This suggests very complicated spatially

random lava transport patterns within the flow

field (Figure 1).

3. Objectives for the stochastic model

If we must abandon a detailed

deterministic approach to the emplacement

process, one might reasonably ask, "What can

we expect to accomplish with a stochastic

model?" Based on the observations above, we

have selected a limited set of tractable,

practical objectives. The random walk model

is expected to:

Provide at least a qualitative

description of the emplacement of

monofilaments of small numbers of

toes,

Describe the spatial spreading rate of

the margins when there are enough

parcels to form a thin layer or lobe,

Approximate quantitatively the shape

of transects across lobes,
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Retain contact, under some set of

parameters, with conventional

descriptions ofpahoehoe emplacement

as a fluid dynamic and heat transfer

process,

Qualitatively describe transitions from

emplacement regimes that are

dominated by random motions to

those that are coherent, organized, and

subject to classical fluid mechanics,

and,

Suggest what should be measured in

the field at length-scales comparable

to toes and at length-scales

comparable to flow lobes.

From a more altruistic perspective, we
would like the random walk model to be based

on sound probability theory. It should produce

dimensions or features that can be compared

with field data and contain the possibility of

relating the parameters of the model to

conventional physics of mass, momentum, or

heat transfer. We can of course simulate any

sequence of random events on a computer

provided enough decision criteria are built

into the simulation. We would like the model

to provide a general means for discriminating

whether a particular simulation is

representative or not.

4. The Correlated Random Walk

Model

To tbrmulate and interpret a random

walk model of lava flow emplacement, we

must be specific about the definition of a

"parcel" of lava. A parcel is considered to be
a fixed volume of lava that is sufficient to

form a typical toe or some other form of

discrete mappable unit. While in motion,

possibly within a much larger ensemble of

such parcels, it may be a fluid element that

actually bears no resemblance to its final

form. We do not suggest that all parcels

become toes, but merely use such a concept as

a convenience. In our work here, we treat

parcels as having a single volume. Statistical

variations in parcel dimensions in Hawaii and

Idaho are given in Crown and Baloga [1999],
but such differences are not treated here.

Based on field observations, it is clear

that the random walk formalism must include

the possibility of a bias. Such a bias

represents a tendency for motion to occur in a

preferred direction. For example, an isolated

parcel may tend move in the direction of the

downslope gradient. Also, parcels may carry

momentum and be influenced by prior
motions and source conditions. These

processes are more closely associated with the

concept of a correlation between movements

rather than a bias. So, the model should also

incorporate the possibilities of perfect

correlation, its absence, and the full range of
intermediate cases. To be useful for

simulating large flow fields, or planetary scale

settings, the theory must be applicable to a

full range of scales from a few toes to

thousands of parcels. We desire a general

analytic formalism that would allow us to
relate the model to conventional fluid

dynamics. Finally, for practical reasons, the

formulation must avoid having to manually

derive the probability distribution for each

step for different degrees of correlation or

bias.

Our formulation of the correlated

random walk uses two parameters to describe

different types of random walks on the grid

shown in Figure 5. See Table 1 for a

definition of mathematical symbols. The first

parameter _ is the probability of taking an
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upward (+y) step from any location when the

choice is random. Thus, 1-e_ is the probability

of taking a step in the downward (-y)

direction. When c_ = 0.5, the randorn walk is

said to be unbiased.

We also use a parameter 9 that

provides a measure of the correlation in the

random walk and the amount of randomness.

When 9 =0, the random walk is said to be

uncorrelated. This means that the tendency of

move upward or downward at any step is

governed solely by 0_ and is completely

independent of any choices made on prior

steps. When 9 =1, there is no randomness

except for the first step. We refer to this case

as perfect correlation. Once a parcel starts in

a direction, it continues identically in that

same direction. In general, for arbitrary

combinations of the parameters, a random

walker can be at any y-value from -N to +N

after N steps. We seek a general formulation

for any combination of 0_and 9 values.

The objective is now to determine the

explicit form ofP(y, N), the probability that a

parcel is located at a position y on the grid

after N steps have been taken. We use

a recursive matrix formulation that determines

the probability distribution after N steps based

on the distribution after N-1 steps:

(y, N)] : [A(N)][P0, , N-l)], N >-(1)

Page 7

Determining the explicit form of [A

(N)] was very challenging because the

correlations originate directly from two prior

steps, and indirectly from all prior steps, while

the recursion relation is based only on the

immediately prior probabilities. As part of
this determination, we must also ensure that

(1) the probabilities retain normalization:

_P(y;N)=I at each step, (2) for 9=0, we

recover the classical binomial distribution

describing an uncorrelated random walk with

an arbitrary bias, and (3) when 9--1 the initial

motions are retained identically.

For P(y, N) to be a rigorous

probability, it must satisfy the normalization

requirement (1). This imposes constraints on

the elements of the matrix [A]. If we require

_A(N) = 1 (2)
J

i.e., the elements of each column sum to 1,

then P(y, N) will be normalized if P(y, N-l) is

normalized. This is proven by summing all

the P(y, N) on the left side of eq 1, writing out

the right hand side explicitly, and using eq 2.

Thus,

Po,,ao :

Y_ P(y,N-1) (3)

The key to such a formulation is finding the

form of the [N-1 x N] matrix [A (N)]. Once

[A (N)] is determined explicitly, eq 1 can be

used to obtain the probabilities at any step for

any mixture of bias and correlation. The

recursive process is started by specifying [P(y,

N=I)] with the two elements P(y=+l, N=I)

=c_ and P(y=-l, N=I) = 1-o_. All subsequent

probabilities are then found by repeated

applications of eq 1.

So, once we assure that the probabilities of the

first step are normalized, the probabilities of

all subsequent steps will be guaranteed if the

elements of [A] satisfy eq 2.

The requirement (2) to reproduce an

uncorrelated random walk means the elements

of [A] must make:
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e(y;X) =
W(k,N, cx) = W((N+y)/2; N;c_) =

N!
(z' (1-(_) _ '

[(N+y)/2]?[(N-y)/2]?

(4)

when P = 0. Here W is the binomial

distribution for k= (y+N)/2 successes out of N

Bernoulli trials with success probability cc It

is interesting to recall here that the limit of the

binomial distribution as N becomes large is

the classical Gaussian or normal distribution

that describes bell-shaped curves. Our

requirement (3) to retain initial motions

identically when P = 1 means that [A] must

make: P(y=+N, N)=cx and P(y=-N, N)= 1-c_for

the case of perfect correlation.

We have derived the general form of

[A (N)] by analyzing the grid in Figure 5 and

the three requirements above. Now we

indicate, by example, how the matrix elements

were obtained. Correlation is, in effect,

mernory of the choice made by a parcel in the

prior step to travel upward or downward.

Thus, it first becomes evident on step N = 2.

So, the first task is to obtain A (N=2) from the

three requirements and the recursion relation:

[P(y, 2)] = [A(2)][P@;, 1)] (S)

The derivation of the six elements of

[A (2)] is easily illustrated by the tabular form:

zF(+2,2; .&3] &2 2(2}-2, = a_

= /c2_ &2 ?,(.i,i) = 1..,_

f"31 "/_32

If we examine Figure 5, we see that the parcel

cannot travel to y=+2 if the first step was

downward or y = -2 if it originally went

upward. Consequently A_2 = A31 = 0. if a

parcel travels to y=+2, it must have

probability cd when O = 0 and probability cx

when p = 1. This can be obtained by setting

A_ = p+0_(1-p) -=p_-+. Here we introduce the

superscripts because these elements will

appear elsewhere in the general matrix for

[A(N)]. To satisfy the normalization

condition of requirement (1), this further

implies A21 = 1 - 9 - a(1-P) =-p+ • By similar

analysis ofy = -2, we must set A32 = 1- C_(1-

9) -=P-to obtain the probability (l-a) 2 when

P = 0 and probability 1-c_ when 9 = 1. Then

normalization requires A22 = co(l-p) - p+.

All six of the elements of [A (N=2)]

have thus been determined explicitly in terms

of the two parameters cc and P. It is easy to

verify that the P(y, 2) sum to 1 for any

combination of 0_ and P, the binomial

distribution is obtained for 9 = 0, and

P(y=+2, 2)=cx and P(y=-2, 2) = 1-c_ when P =
1.

The same seemingly simple process

can be used to obtain [A (N=3)] and [A

(N=4)]. However, as the reader may wish to

verify, the derivation rapidly becomes much

more complex. Unforeseen problems arise

with the edge effects, counting the central

paths correctly, and retaining normalization of

P(y=3, 3) and P(y=4, 4). Only when N _>4, do

we appreciate the full difficulty of the

problem. How this occurs can be seen from

Figure 5. If we take an arbitrary location on

the grid, we see that there are, in general, four

possible locations that can result in the two

subsequent steps. Consequently, if we use the

mirror image of such a wedge, we impinge on

the boundary in different ways coming

backwards from step 4 to step 2.

We have found, nevertheless, our main

theoretical result to be the general explicit

form of [A (N)] as:
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p++ 0 0 - 0

p* p"++ 0

0 p-'+" p-+++

0 0 p .... ,

p°-+- p-+

0 0 p--

where the probabilities p-+++ and p+- are

defned in Table 1. We note that this matrix

always has dimensions of [N-1 x N], and that

only the diagonal elements shown contain

non-zero values.

By using this result in eq 1, we can

readily generate the probability that a parcel

will be located at any admissible y-value after

N steps. It is straightforward to show that all

three requirements are met in the general case

by using the explicit elements for the [A (N)]

from Table 1. This general form for [A (N)] is
the main result of the theoretical formulation.

With it, we can obtain the distribution of an

ensemble of parcels for any desired

combination of bias and correlation. When

many random walkers are considered, the

thickness of a lobe is considered to be

proportional to the probability that a single

random walker is at location y at step N.

meandering of the strand. We do not consider

here the possibility of budding at locations

other than the toe, although this clearly occurs
in the field. As a toe forms at the front of its

predecessor, it is considered to take a single

step in the x-direction. Simultaneously the

parcel is also considered to take a random step

in either the plus or minus y- direction. A

filament of N toes is thus formed by a

sequence of N random steps. The process of

simulating a monofilament corresponds to

generating a single path in the network shown

in Figure 5.

As an example, we suppose that an x,

y coordinate system is laid out in an arbitrary

direction and that 8 toes are to be emplaced

along the path of the random walk. We

consider the random walk to be uncorrelated

but biased with _= 0.75. This means the

probability of taking a step in the +y direction

is 0.75 and the probability of taking a step in

the -y direction is 0.25 for each step of the

sequence. On the average the monofilament

has a constant drift along our coordinate

system as long as c_ is constant. In our

example, the average step is then <y> = 0.5N,

and thus, after 8 steps we expect the tip of the

filament to be at y=+4.

We have simulated such paths with a

random number generator by setting

zxy, =e vi (6)

5. Applications

Monofilaments:

The simplest application of the random

walk formalism is the advance of a

monofilament. We show this trivial case to

illustrate future possibilities for more detailed

simulations. Here our goal is to model the

where the e are taken from a Bernoulli

distribution with <y>=0.5. It should be note

that many random number generators produce

the Bernoulli distribution P(z) for z c [0, 1].

To convert this to our y coordinates, we use
the transformation
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y:2z -1, z - y+l
2 (7)

Results of these simulations are shown

in Figure 6. The straight line shows the

average path. Other paths correspond to
different simulations with the same

parameters. It is very clear that any particular

sequence may have a very different shape

from the average. The randomness in the toe

orientations is evident, as well as the influence

of the bias in each step. Physically the
randomness in the orientation could be related

to the location of the budding site, while the

bias could be due to the overall downslope

direction with respect to our coordinate

system.

This trivial example reflects

qualitatively the monofilament meandering

found in the field. Field studies of such

orientations could be performed. However, we

anticipate that little would be gained because

this style of emplacement is dominated by the

detailed microphysics of the budding process

and the stochastic formulation is directed

towards larger ensembles. We leave it to the

interested reader to determine the variance or

standard deviation of this application and its

conversion into the distribution of orientation

angles. The interested reader may also wish to
tackle similar simulations with the correlated

random walk

Ay, = (l-p) c +gAy _ V i (8)

and investigate the influence of correlation on

the angular distributions of orientations.

Clearly, the discrete steps of our trivial

example can be extended to continuous

distributions as given in Crown and Baloga

[ 19991.

Lobes:

An isolated lobe is produced by the

model when there are enough parcels to form

a distribution P(y, N) at all accessible y

values after N steps. Thus the lobe will have

relief and some shape in cross-section. When

correlation is absent, the result is the cross-

section given by eq 4. Figure 7 shows typical
theoretical transects for the uncorrelated

random walk at three different advancing

steps of lobe emplacement.

We have visited numerous sites at

Kilauea, Mauna Ulu, Haulalai and various

other locations in Hawaii, where lobes are

readily found on the flow fields. We found

that isolated lobes sometimes have a mild

medial peak with an approximately symmetric

decay toward the boundaries. Sometimes

transects are reminiscent of the bell-shaped

curve. Our initial qualitative inspections of

isolated lobes suggested that the emplacement

process might simply be an uncorrelated

random walk. These qualitative observations

also suggested that a more quantitative data-

theory comparison was desirable.

Figures 8a and b show transverse

thickness profiles for two typical lobes at

Hualalai. The measurements were obtained

by stretching a leveled rope above the lobe,

perpendicular to the general direction of flow,

and measuring the relief to the nearest

centimeter at evenly spaced intervals. Because

the surfaces of the lobes are irregular, a

replicate transect was measured at the same

station in each case to indicate the natural

variability.

We have collected about two dozen

such transects to see if the hypothesis of an

uncorrelated random walk was consistent with
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the data (Figure 8). These figures do indeed

show a crude connection with the measured

transects and the theoretical cross-section

associated with an uncorrelated random walk.

However, the most striking difference one
observes in the field is that the lobes are

generally flatter on the top than one might

attribute to a Gaussian. Although the random

walk approach seemed promising, the most

elementary uncorrelated form does not

provide a good quantitative or qualitative

comparison with field transects.

It is not completely surprising that the

applicability of the uncorrelated random walk

to pahoehoe transport is limited. First, this

classical random walk minimizes the

interaction between parcels during transport.

Thus, the limited influence of neighboring

parcels precludes the application of

conventional fluid dynamics to the entire

active lobe. If the uncorrelated walk was

always valid, we would have to abandon all

conventional viscous fluid dynamic models

except for a parcel-by-parcel applications. A

second problem with the uncorrelated random

walk became evident from computer

simulations of many uncorrelated random

walks. These simulations superimposed many

monofilaments. They reproduced broad,

amorphous flow fields of many thousands of

parcels, but were far too diffuse to represent

solitary or multiple lobes.

We have addressed these issues by

considering the correlated random walk. With

a correlated random walk, some "memory" of

what happened to a parcel at prior steps is

retained. Correlation is a manifestation of the

momentum of the flow, inertial effects, and

fluid dynamic pressure when there are many

contiguous parcels in a flow lobe.

Figures 8a and b also show the
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theoretical cross-sections when correlation is

present. The flatness of the shape that

corresponds to what is typically observed in
the field is obtained when the correlation

parameter P is in the vicinity of 0.25 to 0.30.

For lesser values, the cross-sectional shape is

more leptokurtic. Although the flatter cross-

sections are typical, some lobes do show a

modest medial peakedness.

Figure 9 shows the distribution of

pahoehoe parcels for a higher level of the

correlation parameter P. The profiles are

shown at subsequent time steps from 5 to 20

with 9 =0.55. Two noteworthy features are

evident. First, correlation at this level

produces noticeable lateral margins in the

upstream region. The shape of the margins

clearly indicates a tendency of the flow to

channelize as a direct result of the correlation.

Such an effect has been documented [Crown

and Baloga, 1999] in field studies of the

transitional regime from discrete pahoehoe

toes to larger units. Such flow margins cannot

be produced by an uncorrelated random walk

without lateral topographic confinement.

Second, the influence of the correlation

eventually decays for sufficiently long

distances from the source. After 20 steps, all

influence of correlation has been lost and the

transect cannot be distinguished from a

normal distribution. Qualitatively, this is what
is often observed in the field. At the front of

a small lobe, there can be budding and the
random formation of new units while lava

transport upstream is more coherent.

With an uncorrelated random walk, all

the influences on the formation of a toe or the

transport of a parcel are local. The

uncorrelated random walk describes a number

of qualitative features observed in the field,

such as the meandering of isolated filaments

and the budding of toes. This model seems to
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be adequate for a small number of toes, say

less than about a dozen, that occupy a single

path on the grid. The uncorrelated random

walk predicts a medial thickening of the lobe

in cross-section with a gradual decay to the

margins, which is not the typical case
observed in the field.

The influence of correlation becomes

a significant effect in the transport of

pahoehoe as the number of parcels increases

and large-scale fluid dynamic effects compete

with the random processes. As with the

classical correlated random walk [Zauderer,

1983], our formalism also shows that any

correlations due to pressure, momentum, and

inertia must eventually decay. In the

continuum limit for very large numbers of

parcels, correlated random walks engender

wave equations [Zauderer, 1983; Goldstein,

1951]. These wave equations, in turn, can

naturally describe surface wave structures and

lobate features at the fronts and margins, as is

often seen in terrestrial and planetary lava

flows. From classical statistical physics [cf

Zauderer, 1983 and refs therein], correlation

can be associated directly with the terms used

for viscous fluid flow. It also provides a

"chain of memory" between downstream

parcels and the source of lava supply. In

effect, the correlated random walk provides a

bridge between random effects at the toe or

parcel-scale and large-scale continuum fluid

dynamics.

6. Discussion

It must be admitted that a possibility

for obtaining better agreement of the

uncorrelated random walk with field

observations is by lateral confinement at the

margins. Whether by pre-existing topography,

or perhaps by the cooling of the outernaost

lateral boundaries, the effect would be to

thicken the margins, thus flattening the cross-

section. For completeness, we now determine

the transect shapes that are produced by a

laterally confined uncorrelated random walk.

We suppose there is some confining

boundary on one side at Yo When
uncorrelated random walkers encounter this

boundary, they are reflected back into the

admissible parts of the network and resume

their random walk. Chandrasekar [1943],

with reference to Smoluchowski [1915], uses

a clever analysis of the image of paths beyond

the reflecting boundary to show that, for a

single reflecting plane at +y o,

P(y;_ =

W((N+y)/2; N;_x) + P(2Yo-y; N) (9)

"((N+y)/2; N;a) + W((N+2& -y)/2;

It is straightforward both conceptually and

analytically to verify that the probabilities

given by eq 9 retain normalization.

We have used this approach with two

reflecting boundaries at +y o and -y o to

represent the lateral confinement of lobes. To

use this formula, one must be careful about a

number of details. For example, on the array

we have specified, the sites that are accessible

depends on whether N is even or odd. For

N=even, y must be even, and the reflecting

boundary must be from the prior step. This

means the boundaries for lateral confinement

must be at odd locations. For N=odd, these

considerations reverse. The lateral

confinement of the random walk has the effect

of trimming offthe tails by shifting the parcels

to admissible interior parts of the distribution.

Due to normalization, the effect is to steepen

the sides of the distribution, thus flattening the

overall shape. Figures 9a and b show two
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transects that more closely resemble what is
observed in the field.

At present, we cannot preclude the

laterally confined uncorrelated random walk

as a viable model for explaining the cross-

sectional shape ofpahoehoe lobes. However,

there are three points that argue against it.

First, the transects we have shown in Figures

8a and b represent typical cases. For the

confined uncorrelated random walk to

reproduce such shapes, approximately the

same amount must be trimmed from the tails

in actual lobes. As yet, we know of no

physical mechanism that can cause this to be

the usual behavior observed. Second, we

would expect to find in the field a full

spectrum of confinements, ranging from the

Gaussian shape to extreme lateral

confinements. This is not consistent with out

observations, even when a pahoehoe lobe is

found within embanking channels and

between pre-existing flows. Third, it is

physically appealing that, when enough

parcels are present, and the random influences

are relatively small, the lobe should be

governing by classical continuum viscous

dynamics. Such a limit cannot be attained by
the uncorrelated random walk.
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lobe or the flow field.

Mathematically, such a limit is

obtained in the following way. We suppose

that in a small quantity of time ,5, a parcel

takes a step of length i5 along the x-axis

according to the Bernoulli distribution. We

consider three bins at x-6, x, and x+6, and ask

how the probability P(x,t) (or equivalently the

total number of parcels) at x changes in the

time A. The change is given by

P(x, t+`5) - P(x,t) =

o:P(x-O,t)) +(1 -ot)P(x+8,t) - (10)

(1-o:)P(x,t) - c_P(x,t)

If we expand this equation in a Taylor series

that is first-order in time and second-order in

space, we obtain, after taking the limits of the

small quantities,

OP V OP c__P
+ - D-- (11)

Ot dx Ot'

where

6_V : (1-2cz) D- (12)' 2`5

We now turn our attention to a time-

dependent formulation of the random walk

model for a 2-dimensional flow. Our purpose

here is to illustrate how the parcel-scale

considerations can be used to develop macro-

scale governing partial differential equations.

For simplicity, we use only the uncorrelated

random walk. We now employ a continuum

limit to show what happens when the number

of parcels becomes infinitely large. In such a

limit, the small-scale motions of individual

parcels are considered beneath the resolution

of the model and are indistinguishable. Thus,

we observe only the overall evolution of the

This is the classical diffusion equation

with a kinematic transport term, where the
diffusion coefficient D and the "wave

velocity", V, are given in terms of the random

walk parameters A and

8. We can readily solve this equation for a

constant flux at x=0. The time-dependent

solutions are shown in Figure 11. In the

continuum limit, even for the case of an

uncorrelated random walk, we reproduce the

shape of an advancing wave that looks much

like what we would expect from conventional

fluid dynamics. It remains for future
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investigations to develop the correlated
random walk in such a continuum limit.

Conceptually, we can now begin to

interpret or simulate much of what is seen on

the surface of broad, seemingly amorphous

pahoehoe flow fields. The model represents

several regimes of emplacement, including

small monofilaments and monolayers of toes,

small lobes that may have channels, and larger

lobes that advance as a continuum wave.

Flow fields are often superpositions of these

different modes of emplacement. We do not

at present know what controls the formation

of one style of emplacement versus another.

The quanitity, location, and timing of the lava

supply are clearly a major factors. However,

flow rate, cooling rate, texture, setting and gas

content may all be important [Rowland and

Walker, 1987; Rowland and Walker, 1990;

Keszthelyi and Denlinger; 1996;Wilmoth and

Walker; 1993; Crown and Baloga, 1999].

These, in turn, have there own random

variations, which remain to be studied

subsequently.

7. Conclusions

The transport and emplacement of

pahoehoe often features random effects that

compete with, or dominate, systematic effects.

When such random effects are important, the

use of a stochastic approach is necessary.

This means that we can only predict

dimensions, shapes, and features in a

probabilistic sense. Even under identical

starting conditions, particular realizations may

differ from case to case. It is impossible to

predict the details on any particular

realization. Length and width become random

variables, as well as any simulation of

locations, thicknesses, etc. When the
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emplacement can be modeled as a random

walk, the model provides a means for

evaluating whether a particular case is

representative or not.

The random walk theory we have

presented embraces different types of random

walks, biased, uncorrelated, and correlated.

These three effects can be adjusted in the

general case by two parameters, c_ and p.

The first parameter describes the pre-

existing slope or other factors that bias the

orientation of motion. The second parameter

describes correlation between steps that is

conceptually associated with momentum,

inertia, and pressure effects. Small-scale

pahoehoe features, such as monofilaments of

toes and small lobes are amenable to

description as different types of random
walks.

We have collected field data intended

to distinguish the different types of random

walks for the small pahoehoe features found
in flow fields. We have shown that an

uncorrelated classical random walk does not

completely describe what is typically observed

in the field, except for the meandering of
small filaments. Correlation must be added

to the random walk to describe larger lobe

cross-sections qualitatively and quantitatively.

A special case of the uncorrelated random

walk with lateral confinement can also

reproduce the rather flat lobe thickness

transects observed in the field. Although this

special case cannot be rigorously precluded, a

host of factors argue against its validity.

The correlated random walk provides

an adequate description of lobe thickness

transects and provides a conceptual bridge

between random processes and conventional

viscous fluid dynamics. It can be related to

momentum transport, hydrodynamical fluid
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pressure, and inertial effects, all of which

operate to some extent when many lava
parcels are contained in the active lobe. The

natural spreading of a correlated random walk

clearly has a channel-forming regime that

decays to uncorrelated behavior far from the

source, as is often seen in the field.

We have shown for the uncorrelated

random walk how to obtain macro-scale

governing partial differential equations from

the random model at the lava-parcel scale

when hundreds or thousands of parcels are

involved in the emplacement. The time-

dependent longitudinal transects thus obtained

resemble the advance of a continuum wave.

However, the more exciting prospect resides

with the richness of possibilities, e.g.,

channels and wave-like structures, contained

in the macro-scale correlated random walk.

helpful discussions.

Figure Captions

Figure 1: A typical broad amorphous

field of toes in Hawaii. This figure

indicates the predominance of random

effects on the emplacement process

and the need for a stochastic approach.

Figure 2: An isolated filament formed by

budding of toes. For the most part, the

filament advances by the budding

from the forward toe, but toes also

form toward the side. There is random

meandering as the filament advances

but often a general overall

directionality with randomness in the

orientations of the toes.

The underlying physical processes and

factors that determine the type of random walk

in particular field settings are not yet

understood. Future studies will focus on this

connection, with emphasis on the transitions

for one type of random walk to another and

the explicit relationships to conventional lava

transport models. The investigations reported

here suggest that the random effects

associated with pahoehoe emplacement are

indeed amendable to quantitative treatment

and offer promise for modeling the

emplacement of planetary flows.
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Figure3" A typical isolated lobe of

pahoehoe toes. Note the thickening

medial tendency and the decay toward

the laterally unconfined margins. The

transect shape is reminiscent of a bell

shaped curve.

Figure 4: A typical laterally confined

lobe. Here the lateral extent of the

lobe was influenced by pre-existing

topography.

Figure 5" 2-dimensional grid for the

random walk. N and y are discrete

variables representing the downflow

distance and lateral distance

respectively.

Figure 6: Simulations of a random walk

for a monofilament. The straight line

shows the average path. Other paths

correspond to different simulations

with the same parameters.
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Figure 7." Typical theoretical transects
for the uncorrelated random walk at

three different advancing steps of lobe

emplacement.

Figure 8 a, b: Typical examples of thickness
cross-sections of isolated lobes at

Hualalai. Each panel shows two

replicate sets of measurements at the

same station. Also shown are

theoretical cross-sections with 9=0.28
as solid line.

Figure 9" Theoretical cross-sections of lobes

produced by a correlated random walk

with 9=0.45 at time steps ranging

from 5 (top curve) to 20.

Figure 10: Cross-sections of a laterally

confined lobe and comparison with

laterally confined uncorrelated random
walk.

Figure 11: The wave formed by the

advance of uncorrelated random

walkers in the continuum limit. The

two waves farthest right at t=75 and

t=100 have a=0.9. The two waves to

the left at t=75 and t=t00 have

cx=0.75.
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Table 1. Definition of Mathematical Symbols

Symbol Definition

y Distance from origin/flow center

N Step number/downflow distance

0_< c__<1 Single step probability (+y direction)

0_< 9_< 1 Correlation parameter

[A] Recursion matrix

p_+ p+_z(1-p)

P+- 1-9-a(l-P)

p-+ a(1-p)

p 1- a (1-9)

p-+- (p-+ p+)/2

p-+'_ (p+ +p++)/2

W(k;a, N) Binomial distribution for y successes

in N Bernoulli trials with success

probability et
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